
Level 2:
Game Design / Iteration and 
Rapid Prototyping
Originally posted July 2, 2009

Last time we asked the question: what is a 
game? Today, we look into a related question: 

what, exactly, is game design? Last time, we made 
a simple game. This time, we will look into the 
process of how games are made in general. While 
it is possible to make a race-to-the-end board game 
in 15 minutes, you will need to take a little longer 
if you are looking to make the next Settlers of 
Catan or World of Warcraft.

Game Design

We will use the word “design” a lot in this course, and un-
fortunately it is a term that is a bit overused, so I will clarify 
what I mean here. As it says in Challenges, game design is the 
creation of the rules and content of a game. It does not involve 
programming, art or animation, or marketing, or any of the 
other myriad tasks required to make a game. All of these tasks 
collectively can be called “game development” and game de-
sign is one part of development.

Unfortunately, I have seen the term “design” used (particu-
larly in some college curricula) to refer to all aspects of devel-
opment. When used in the video game industry (or the board 
game industry), “game design” has a very specific meaning, 
and that is the meaning that we will use for this course.

Multiple Types of Game Design

As mentioned in Challenges, there are many tasks associated 
with game design: system design, level design, content de-
sign, user interface design, world building, and story writing. 
You could fill several 10-week courses with any one of these, 
so this summer course will not be a full treatment of the entire 
range of game design. We will touch lightly on UI, story writ-
ing and content when relevant, but the majority of this course 
focuses on system design (also sometimes called “systems 
design” or “core systems design”).

System design is about defining the basic rules of the game. 
What are the pieces? What can you control? What actions can 
you take on your turn (if there are “turns” at all)? What hap-
pens when you take each action, and how does it affect the 
game state? In general, system design is the creation of three 
things:

 » Rules for setup. How does the game begin?

 » Rules for progression of play. Once the game begins, 
what can the players do, and what happens when they 
do things?



 » Rules for resolution. What, if anything, causes the game 
to end? If the game has an outcome (such as winning or 
losing), how is that outcome determined?

If you look back at Three-to-Fifteen from Level 1, you’ll no-
tice those very simple rules contain all of these parts. The cre-
ation of those rules is system design, and that is what we will 
be spending most of our time with over this summer.

What is a Game Designer?
As you may have noticed, game design is an incredibly broad 
field. Those of us who are professional designers sometimes 
have trouble explaining what we do to our families and friends. 
Part of the reason for this is that we do so many things. Here 
are some analogies I’ve seen when trying to explain what it is 
like to be a game designer:

 » Game designers are artists. The term “art” is just as 
difficult to define as the word “game”… but if games can 
be a form of art (as we saw in Costikyan’s definition, at 
least), then designers would be artists.

 » Game designers are architects. Architects do not build 
physical structures; they create blueprints. Video game 
designers also create “blueprints” which are referred to as 
“design docs.” Board game designers create “blueprints” 
as well — in the form of prototypes — which are then 
mass-produced by publishers.

 » Game designers are party hosts. As designers, we invite 
players into our space and try our best to show them a 
good time.

 » Game designers are research scientists. As I will touch 
on later today, we create games in a manner that is very 
close to the scientific method.

 » Game designers are gods. We create worlds, and we 
create the physical rules that govern those worlds.

 » Game designers are lawyers. We create a set of rules that 

others must follow.

 » Game designers are educators. As we will see later 
when we start reading Theory of Fun, entertainment and 
education are strongly linked, and games are (at least 
sometimes) fun because they involve learning new skills.

If game design is all these things, where would it fit in a col-
lege curriculum? It could be justified in the school of educa-
tion, or art, or architecture, or theology, or recreation manage-
ment, or law, or engineering, or applied sciences, or half a 
dozen other things.

Is a game designer all of these things? None of them? It is 
open for discussion, but I think that game design has elements 
of many other fields, but it is still its own field. And you can 
see just how broad the field is! As the field of game design 
advances, we may see a day where game designers are so spe-
cialized that “game design” will be like the field of “science” 
— students will need to pick a specialty (Chemistry, Biology, 
Physics, etc.) rather than just “majoring in Science.”

Speaking of Science…

How is a game designed? There are many methods.

Figure 1 - The Waterfall Method



Historically, the first design methodology was known as the 
waterfall method: first you design the entire game on paper, 
then you implement it (using programming in a video game, 
or creating the board and pieces for a non-digital game), then 
you test it to make sure the rules work properly, add some 
graphical polish to make it look nice, and then you ship it.

Waterfall is so named because, like water in a waterfall, you 
can only move in one direction. If you’re busy making the 
final art for the game and it occurs to you that one of the rules 
needs to change, too bad — the methodology does not include 
a way to go back to the design step once you are done.

At some point, someone figured out that it might be a good 
idea to at least have the option of going back and fixing things 
in earlier steps, and created what is sometimes known as the 
iterative approach. 

As with waterfall, you first design the game, then implement 
it, and then make sure it works. But after this you add an extra 
step of evaluating the game. Play it, decide what is good and 
what needs to change. And then, make a decision: are you 
done, or should you go back to the design step and make some 

changes? If you decide the game is good enough, then that is 
that. But if you identify some changes, you now go back to 
the design step, find ways to address the identified problems, 
implement those changes, and then evaluate again. Continue 
doing this until the game is ready.

If this sounds familiar, it is because this is more or less the 
Scientific Method:

1. Make an observation. (”My experience in playing/mak-
ing games has shown me that certain types of mechanics 
are fun.”)

2. Make a hypothesis. (”I think that this particular set of 
rules I am writing will make a fun game.”)

3. Create an experiment to prove or disprove the hypothesis. 
(”Let’s organize a playtest of this game and see if it is fun 
or not.”)

4. Perform the experiment. (”Let’s play!”)

5. Interpret the results of the experiment, forming a new set 
of observations. Go back to the first step.

With non-digital (card and board) games, this process works 
fine, because it can be done quickly. With video games, there 
is still one problem: implementation (i.e. programming and 
debugging) is expensive and takes a long time. If it takes 18 
months to code the game the first time and you only have two 
years, you will not get a lot of time to playtest and modify the 
game.

In general, the more times you iterate, the better your 
final game will be.

Therefore, any game design process should involve iterating 
(that is, going through an entire cycle of designing, imple-
menting and evaluating) as much as possible, and anything 
you can do that lets you iterate faster will usually lead to a 
better game in the end. Because of this, video game design-
ers will often prototype on paper first, and then only get the 
programmers involved when they are confident that the core 
rules are fun. We call this rapid prototyping.

Iteration and Risk

Figure 2 - The Iterative Approach



Games have many kinds of risk associated with them. There 
is design risk, the risk that the game will not be fun and 
people won’t like it. There is implementation risk, the 
possibility that the development team will not be able to 
build the game at all, even if the rules are solid. There is 
market risk, the chance that the game will be wonderful and 
no one will buy it anyway. And so on.

The purpose of iteration is to lower design risk. The more 
times you iterate, the more you can be certain that the rules of 
your game are effective.

This all comes down to one important point: the greater the 
design risk of your game (that is, if your rules are untested and 
unproven), the more you need iteration. An iterative method is 
not as critical for games where the mechanics are largely lifted 
from another successful game; sequels and expansion sets to 
popular games are examples of situations where a Waterfall 
approach may work fine.

That said, most game designers have aspirations of making 
games that are new, creative, and innovative.

Why This Course is Non-Digital…

1Some of you would rather make board games anyway, so you 

don’t care how video games are made. But for those of you 
who would love to make video games, you may have won-
dered why we will be spending so much time making board 
and card games in this course. Now you know: it is because it-
eration is faster and cheaper with cardboard. Remember from 
Monday: you can make a board game in 15 minutes. Cod-
ing that game will take significantly longer. When possible, 
prototype on paper first, because a 15-minute paper prototype 
and an hour-long playtest session can save you months of pro-
gramming work.

Later in this course, we will discuss in detail methods of pa-
per prototyping, both for traditional board games and also for 
various types of video games.

There is another reason why we will concentrate primarily on 
non-digital games this summer, particularly board and card 
games. This is a course in systems design, that is, creating 
the rules of the game. In board games, the rules are laid bare. 
There may be some physical components, sure, but the play 
experience is almost entirely determined by the rules and the 
player interactions. If the rules are not compelling, the game 
will not be fun, so working in this medium makes a clear con-
nection between the rules and the player experience.

This is not as true in video games. Many video games have 
impressive technology (such as realistic physics engines) and 
graphics and sound, which can obscure the fact that the game-
play is stale. Video games also take much longer to make (due 
to programming and art/audio asset creation), making them an 
impractical choice for a ten-week course.

The connection between rules and player experience is also 
muddied in tabletop role-playing games. I realize that many 
of you have expressed an interest primarily in RPG design, so 
this may seem strange to you. However, keep in mind that an 
RPG is essentially a collaborative story-telling exercise (with 
a rules system in place to set boundaries for what can and 
can’t happen). As such, a wonderful system can be ruined by 
players who have poor story-telling and improv skills, and a 
weak system can be salvaged by skillful players. As such, we 
will stay away from these game genres, at least in the early 
stages.

Figure 3 - The Iterative Approach with Rapid Prototyping



Trying it out

Take that 15-minute game you made last time, and play it, 
if you haven’t already. As you are playing, ask yourself: is 
this more fun or less fun than playing your favorite published 
games? Why? What could you change about your game to 
make it better? You do not have to play the game to comple-
tion, but only for as long as it takes you to get the overall feel-
ing of what it is like to play.

Then, after playing once, make at least one change. Maybe 
you’ll change the rules for movement, or add a new way for 
players to interact. Maybe you’ll change some of the spaces 
on the board. Whatever you do, for whatever reason, make 
a change and then play again. Note the differences. Has the 
change made the game better, or worse? Has this one change 
made you think of additional changes you could make? If 
the game got worse, would you just change the rule back, or 
would you change it again in a different way?

We will be looking at the playtest process in detail later in this 
course. For now, I just want everyone to get over that fear: 
“what if I play my game and it sucks?” With the game you de-
signed in Level 1, the odds are very high that your game does 
suck (seriously, did you expect to make the next Gears of War 
in 15 minutes?). This does not make you a “bad designer” by 
any means — but it should make it clear that the more time 
you put into a game and the more iterations you make, the 
better it gets.

Lessons Learned

The one big takeaway from today is that the more you iterate 
on a game, the better it becomes. Great designers do not de-
sign great games. They usually design really bad games, and 
then they iterate on them until the games become great.

This has two corollaries:

 » You want to have a playable prototype of your game 
as early in development as possible. The faster you can 

playtest your ideas, the more time you have to make 
changes.

 » Given equal amounts of time, a shorter, simpler game will 
give a better experience than a longer, complicated game. 
A game that takes ten hours to play to completion will 
give you fewer iterations than a game that can be played 
in five minutes. When we start on the Design Project later 
in this course, keep this in mind.

Level 2 - Homeplay

Before next Monday, read the following. I will be referencing 
these in Monday’s content when we talk about the formal ele-
ments of games:

 » Challenges for Game Designers, Chapter 2 (Atoms). This 
will act as a bridge between last Monday when we talked 
about a critical vocabulary, and next Monday when we 
will start breaking down the concept of a “game” into its 
component parts. 

 » Formal Abstract Design Tools (available at http://
www.gamasutra.com/features/19990716/
design_tools_01.htm), by Doug Church. This 
article builds on Costikyan’s I Have No Words, offering 
some additional tools by which we can analyze and 
design games. While he does use many examples from 
video games, think about how the core concepts in the 
article can apply to other kinds of games as well.


